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The Galileo spacecraft encountered the Earth once on December 8, 1990 (Earth-I), and again on 

December 8, 1992 (Earth-II).  These flybys provided excellent opportunities to evaluate the 

performance of the Energetic Particle Detector (EPD) and establish analysis procedures in a 

relatively well-known environment.  Further, because Galileo's Earth flyby trajectories were very 

rapid and nearly radial, the radiation belt measurements provided an excellent “snapshot” of 

trapped radiation.  Because of the rapid flyby and the 20 second spin period of Galileo, great care 

had to be taken to remove time aliasing from the pitch angle distributions.  Large anisotropies were 

also present due to intrinsic density gradients.  Spherical harmonics were fitted to the pitch and 

phase distributions in order to obtain fluxes from which phase space densities could be computed.  

The phase space density (PSD) was calculated from the fitted count rate for the particles (protons) 

that conserve the first and second adiabatic invariants.  The values of 10.0, 15.0, 20.0, 25.0 30.0, 

35.0, 40.0, 45.0, and 50.0 MeV/G were used for the first adiabatic invariant, and the values of 0.10, 

0.15, 0.20, 0.25, 30.0, and 0.50 G0.5 RE were used for the second adiabatic invariant to determine 

the PSD from Earth-I and Earth-II observations.  The extracted PSDs were examined for radial 



 2

diffusion.  Results show there is no unique global dependency of the diffusion coefficient to L, 

except for a limited region of the first and second adiabatic invariants. 

 

Introduction 

 

Diffusion of geomagnetically trapped particles has been studied by Nakada and Mead [1965]; 

Falthammar [1966, 1968, 1970]; Haerendel [1968, 1970]; Birmingham et al. [1968]; Roederer 

[1968a, b]; Walt [1970]; Williams [1970]; Cornwall [1972]; Croley et al. [1976]; Spjeldvik [1977]; 

Holzworth and Mozer [1979]; Westphalen and Spjeldvik [1982]; Jentsch [1984]; Riley and Wolf 

[1992]; Lui [1993]; and Sheldon [1994].  Falthammar [1966] applied the one-dimensional Fokker-

Planck equation to particles moving near the equatorial plane and found two different results for the 

diffusion coefficient depending on the assumed characteristics of the magnetic impulses compared 

to the azimuthal drift period.  For randomly repeated pulses with very short rise time and very long 

duration, the result was D ∝ r10, and for pulses not much longer than the drift period the result was 

D ∝ µ2 r6.  Spjeldvik [1977] worked on a numerical solution of the Fokker-Plank equation by 

imposing boundary conditions to explain the equilibrium structure of equatorial radiation belt 

protons and compared the results with observations.  The steady state transport equation at an 

arbitrary pitch angle has been used by Jentsch [1984] to study the radial distribution of radiation 

belt protons. 

A summary of observational evidence on radial diffusion of geomagnetically trapped particles 

was given by Roederer [1968a].  The theoretical and experimental values of the radial diffusion 

coefficients have been summarized by Falthammar [1970] and updated by Walt [1971] and then by 

Holzworth and Mozer [1979].  Radial diffusion coefficient values derived from both theoretical and 
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experimental sources, as updated by Holzworth and Mozer [1979], are given in Figure 1.  Results 

for DLL are labeled by numbers and correspond to the investigations organized historically and 

shown in the figure.  Because Figure 1 includes a wide range of particle energies and calculation 

methods, the spread of values for the diffusion coefficient is several orders of magnitude at a given 

L-value.  Despite the spread of DLL values, Figure 1 suggests that radial diffusion occurs at rates 

which generally diminish with decreasing L-value as mentioned by Walt. A summary of different 

methods of determining DLL is given by Lanzerotti et al. [1978], and estimated radial diffusion 

coefficients from measurements of electric and magnetic field fluctuations are compared by 

Lanzerotti and Wolfe [1980; see Figure 2 of that paper].   

In this experimental investigation, geomagnetically trapped protons of 22 keV to 3.20 MeV 

have been studied for the region L=1.5 to L=10.0 based on observations by the Galileo spacecraft 

during the Earth-I (December 8, 1990) and Earth-II (December 8, 1992) encounters.  This work 

differs from others in that it covers the entire radiation belt region for a broad range of proton 

energies and includes treatment of off-equatorial mirroring particles.  The extracted phase space 

density (PSD) from Galileo Energetic Particle Detector (EPD) observed count rates was compared 

to that from the NASA AP8 model, and the result was reported by Alinejad and Armstrong [1997] 

(hereafter referred to as paper-I).  In this current paper, we will examine the Galileo PSD of protons 

for radial diffusion by violation of the third adiabatic invariant while conserving the first two 

adiabatic invariants. 

The main mission of the Galileo spacecraft was to study the Jupiter system, including the 

galilean satellites, the Jovian atmosphere, and the Jovian magnetosphere.  The trajectory of the 

Galileo spacecraft was designed to use a Venus-Earth-Earth gravity assist (VEEGA) to gain enough 

energy and the desired trajectory to reach Jupiter.  The VEEGA trajectory used one gravity-assisted 



 4

flyby of Venus and two gravity-assisted flybys of Earth. The Galileo spacecraft carried an 

Energetic Particle Detector (EPD) which was designed to measure the population of particles. The 

Galileo mission, trajectory, instrumentation, and EPD instrument are described in paper-I. 

To be able to determine the pitch angle along the spacecraft trajectory, a local magnetic field is 

required.  During the second Galileo Earth encounter, geomagnetic field observations were 

saturated at closest approach; therefore, the Tsyganenko-87 magnetospheric magnetic field 

analytical model [Tsyganenko, 1987] was used for analysis purposes for the second Earth flyby.  A 

brief introduction to this model and its validity are given in paper-I.  

 

Method and Formulation 

 

Data from the Galileo project were received in the form of particle count rates versus time in 

sixteen sectors for each spacecraft spin in the case of the proton energy channels.  To be able to 

analyze these data, the spacecraft orientation was transformed into the magnetic coordinates.  In 

this coordinate transformation, the spacecraft spin axis was transformed to the local magnetic field 

direction.  In this case, the angle between the look direction and the Z-axis gives the particle's pitch 

angle, α.  Ephemeris data was used to determine the phase angle of the look direction.  The X-

axis was chosen to be in the plane formed by the Z-axis and the spacecraft-Earth line, and the Y-

axis completes the Cartesian coordinate.  Projection of the look direction on the X-Y plane from the 

X-axis gives the phase angle, φ.  In this transformation, count rate is a function of energy (E), pitch 

angle (α), and azimuthal angle (φ), at each position (L); that is 

 

 Rij=R(Ei,αj,φj,L) (1) 
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where i indicates the energy channel and j indicates the sector position.  As the spacecraft spins, the 

direction of the detector changes and the spacecraft maps gyrocenters located within 2 gyroradii.  If 

two points are connected with a line passing through the center of the loop, corresponding 

gyrocenters of these two points will be separated by 2 gyroradii.  Since count rates differ because of 

the gyrocenter locations, loops are an indication of the spatial gradient.  The presence of the spatial 

gradient in each spin does not allow for simple linear interpolation with respect to the pitch angle; 

this is one of the reasons to fit the data to the function which depends on phase angle as well as on 

pitch angle.  Since the energy and pitch angle of the particles (protons) are known for the first and 

second adiabatic invariants (which are conserved), the corresponding phase space density, f, can be 

deduced from the flux. The detailed procedure of calculation of the PSD at constant µ and K from 

the count rate, which was fitted to the associated Legendre function by a χ2 minimization method, 

is given in paper-I.  

In summary, the spin averaged count rates were organized in three motor position (step) groups 

so data were linked from one step to another.  Ranges of the first two adiabatic invariants were 

determined from the spacecraft position and the intersection of magnetic field lines with the Earth's 

surface.  Values of 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, and 50.0 MeV/G were chosen for 

the first adiabatic invariant, µ, and values of 0.10, 0.15, 0.20, 0.25, 0.30, and 0.50 G0.5 RE were 

chosen for the second adiabatic invariant, K.  Energy, E*, and pitch-angle, α*, were calculated for 

each pair of these two adiabatic invariants.  Energy was bounded between geometrical mean 

energies of two consecutive energy channels, and associated Legendre function was fitted to data of 

each proton channel.  Coefficients from each fitting along with α* and gyrophase were used to 

calculate the differential flux of each channel and then interpolated for energies to find the 



 6

differential flux corresponding to E*.  The phase space density was determined from differential 

flux.  

For the higher values of the second adiabatic invariant, K>5.0, there were not many data points 

obtained after the spherical harmonic was fitted to the observed data, because for higher values of 

K the pitch angle of particles increases accordingly.  Therefore, most particles mirror before 

reaching the spacecraft at higher local latitude and causing a reduction in the particle's flux.  Also, 

there was a restriction on data in that only points which were larger than or equal to 50 percent of 

the largest value in the group of steps were retained.  This restriction eliminated most of the data 

for the higher energy particles.  For each pair of the first and second adiabatic invariants, 

corresponding phase space densities were calculated by the method that was discussed in paper-I.  

There are four sets of data corresponding to inbound and outbound of Earth-I and inbound and 

outbound of Earth-II.  With conservation of the first two adiabatic invariants, each set covers a 

limited region of the radiation belts.  To have better coverage of the radiation belt zone, all four sets 

were combined and analyzed as one set of data.  Hence the combined four sets of phase space 

density will be referred to as just phase space density. 

To analyze data by using equation (2), we introduce an empirical function f(L) with three 

parameters as 

 

 ( )1 2 3ln lnF f b b L b= = + −  (2) 

 

This form has been found to fit the observations as will be displayed in Figures 2 to 6.  The last 

term in this equation is the logarithmic function, and the argument must be positive values.  This 

condition implies a restriction on the third parameter; therefore b3 must satisfy 
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 b3<Lmin (3) 

 

There are no restrictions on the other parameters.  Three parameters, b1, b2 and b3, are determined 

from fitting the empirical function to the phase space density by the χ2 minimization method.  

These parameters are tabulated in Table 1. The dashed lines in Figures 2 to 6 show the fits with 

parameter values given in Table 1.  

From analysis of all pairs of the first two adiabatic invariants, we show here, in Figures 2 

through 6, only a few graphs of phase space densities and corresponding fitted points versus L.  

These graphs are for values of the first adiabatic invariant, µ = 10.0 to 50.0 by step 10.0 which are 

paired with two extreme values of the second adiabatic invariant, K=0.10 and K=0.50.  On all of 

these graphs observational data is marked by open triangles for K=0.10 and by open squares or 

circles for K=0.50, and corresponding points from fitting the introduced empirical function 

(equation (2)) are represented by solid triangles and solid squares connected by a dotted line.  Each 

of these figures consists of two graphs; while each graph corresponds to the same value of the first 

adiabatic invariant, the upper graph is for K=0.10 and the lower graph corresponds to K=0.50.  The 

values of the first two invariants are shown on the graphs.  

Figure 2 represents the PSD and fitted points versus L for µ=10.0 and K=0.10 in the upper 

graph and K=0.50 in the lower graph.  In the upper graph, observed data are scattered around the 

fitted points.  The PSD is less than the fitted points at region L < 2.0 and exceeds the fitted points at 

region 2.0 ≤ L ≤ 3.0, becomes less than fitted points at region 3.0 < L < 4.2, and again is higher at 

L=4.4 and L=5.3.  On the other hand, in the lower graph there is good agreement between 

observation and empirical function for region L ≤ 2.0, and observation is higher than fitted points 
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for region 2 < L ≤ 4.2 and then decreases at region L ≥ 5.8.  As mentioned before, the represented 

PSD is a collection of four sets of data from inbound and outbound of Earth-I and Earth-II, which 

were observed at different times and different geomagnetic latitudes, which in turn causes data 

from the different sets not to overlap with each other. 

The upper graph of Figure 3 represents PSD and fitted points for µ = 20.0 and K=0.10, and the 

lower graph is for K=0.50. In the upper graph, PSD and fitted points agree with each other except 

for region 2.5 ≤ L ≤ 3.1.  In the lower graph, data exceeds the fitted points at 3.6 ≤ L ≤ 4.2 and is 

less than fitted points at region 3.8 ≤ L ≤ 6.4. 

In Figure 4, which is for µ= 30.0 and K=0.10 (upper graph) and K=0.50 (lower graph), data are 

scattered around fitted points at region 5.0 ≤ L ≤ 7.5.  This happened because at the time of the 

inbound of the Earth-I encounter, there was a geomagnetic storm which affected higher energy 

particles more.  This effect is pronounced in Figure 5 and Figure 6 in the case of K=0.10.  We 

discussed the effect of the storm in more detail in paper-I.  In the lower graph, data and fitted points 

are in relatively good agreement with each other.  In both Figure 5 and Figure 6, data and fitted 

points match each other in the lower graphs, and data is scattered around fitted points in the upper 

graph, which is due to the geomagnetic storm effect mentioned earlier. Despite the scatter 

introduced by secular variation, the empirical form of the PSD (function shown in equation (3)) is 

reasonably well-behaved. 

Table 1 summarizes the values of three parameters, b1, b2, and b3, for the full range of adiabatic 

invariants for which we have coverage.  Figure 7 shows exp(b1) versus µ for the two extreme 

observed values of L.  Note from Equation (3) that this expression sets the magnitude of the PSD 

and that the magnitude of the PSD falls much more rapidly with increasing µ for off-equatorial 

protons (K=0.5) than for those closer to the equator (K=0.1).  At µ = 10 MeV/gauss, for example, 
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the PSD for K = 0.5 is only about a factor of 2 smaller than that for K= 0.1, while at 50 MeV/gauss  

the PSD for K= 0.5 is more than a factor of 100 smaller than that for K = 0.1.  This result illustrates 

the fact that PSDs for higher energies (corresponding to higher µ values) diminish with increasing 

K much more rapidly than for lower energies.  Figure 8 shows the parameter b2 representing the 

exponent of the L-dependence of the PSD.  We show how b2 varies with the first invariant, µ, at the 

extreme observed values of the second invariant, K. The points for K=0.1 all lie above those for 

K=0.5 at the same values of µ, showing that the PSD for protons mirroring closer to the equator 

(K=0.1) depends more strongly on L than for those mirroring further from the equator (K=0.5).  For 

both values of the second invariant, K=0.1 and K=0.5, the L-dependence of PSD becomes much 

stronger at low values of the first invariant.  Note that all values of b2 are positive, which shows 

that the PSD increases monotonically with L for all values of first and second adiabatic invariants. 

The fitting results for the final parameter, b3, of equation (2) are shown in Figure 9.  Inspection 

of the patterns in Figure 9 suggests that this parameter is either not well determined by our data set, 

may not have easily interpreted physical significance, or that our presentation of it does not reveal 

the variations effectively.  From the form of equation (3), it is evident that b3 is a parameter of 

convenience introduced to allow the PSDs to be represented more compactly and accurately than 

would otherwise be the case.  It’s more easily understood as a zero offset of the L scale.  We do not 

attempt to explain or rationalize it here. 

Since phase space density f is known from the fitting procedures, which was explained in 

paper-I, we can use the quadrature (spatial) method [Schulz and Lanzerotti, 1974].  If we let F ≡ ln f 

then the radial diffusion equation can be written as 
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for constant µ and K; τ is the particle lifetime and represents the loss and/or source term. 

Taking the first and second derivatives of F (equation (2)) with respect to L, we have 

 

 2

3

bF
L L b

∂ =
∂ −

 (5) 

 

and 

 

 
( )

2
2

22
3

bF
L L b

−∂ =
∂ −

 (6) 

  

To proceed further in interpreting the PSDs it is necessary to introduce an assumed form of 

diffusion coefficient.  Here we take a power law form in L. 

 

Approach #1:  Time Stationary Transport with Source and Loss for Power Law form of DLL 

 

Assuming the diffusion coefficient to be a power-law with respect to L: 

 

 0
nD D L=  (7) 

 

and considering only a steady state condition  
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 0f
t

∂ =
∂

 (8) 

 

the steady state diffusion equation can be written as 

 

 ( )
( )

2

2 2 2
2

0 3 33

2.01
n

n b b b
D L L L b L bL bτ

⎡ ⎤− ⎡ ⎤ ⎛ ⎞−⎢ ⎥= + + ⎜ ⎟⎢ ⎥− −−⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
 (9) 

 

The values of b1, b2, and b3 are empirically determined from fitting the Galileo EPD observations.  

In this simplified transport equation with all mentioned assumptions, source and loss terms, 

represented by τ, and the transport rate, represented by “n” and Do, are coupled.  Equation (9) is not 

sufficient to allow one to proceed without further information.  To be able to use equation (9) one 

of the parameters, either “n” or Doτ, must be determined.  Note here that if there are no sources or 

losses this would make the left hand side of equation (9) equal zero.  The right hand side of 

equation (9) then would require a solution for n as 

 

 2

3

12.0 bn L
L b
⎡ ⎤−= + ⎢ ⎥−⎣ ⎦

 (10) 

 

The equation shows that n would depend on L, and that is undesirable. The preferred value for n is 

the one for which equation (9) is satisfied for all L values.  Clearly, to match the requirement of the 

power law form of the L-dependence of the diffusion coefficient, some source or loss is required. 
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One possibility is to choose the value of n for which the source or loss term will be minimized for 

the entire radiation belt region, that is 

 

 2

0

1 minnL L
D Lτ
⎡ ⎤

∆ =⎢ ⎥
⎣ ⎦

 (11) 

 

for all L's or 
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n b b b L L
L L b L bL b
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The reason to weight equation (11) or equation (12) by L2 is to get more distinguishable values for 

different n.  The behavior of this equation for different values of n is shown in Figure 10 for µ=10.0 

MeV/gauss and K=0.10 (gauss)1/2 RE as a sample.  The ordinate values of this graph are equal to 

equation (12).  Here the value of n= -5 is the exponent of choice.  This value of n is used in 

equation (9) to calculate the (Doτ)-1 term. 

Since all four parameters in equation (9) are known, they are used to evaluate 

 

 ( )
( )

2

2 2 2
2

0 3 33

2.01 nn b b b L
D L L b L bL bτ

⎛ ⎞⎡ ⎤− ⎡ ⎤ ⎛ ⎞−⎜ ⎟⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎜ ⎟− −−⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦⎝ ⎠
 (13) 

 

which is actually the inverse of the diffusion coefficient multiplied by a particle's lifetime and 

represents the loss or source term.  A sample graph of (Doτ)-1 versus L is shown in Figure 11 for 
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µ=10.0 MeV/gauss and K=0.10 (gauss)1/2 RE.  Since in this graph logarithmic scale is used, the 

absolute value of (Doτ)-1 is displayed.  Loss and source are separately indicated on the graph.  

Subject to the assumptions of time stationary distributions and power law diffusion coefficient 

dependence of DLL=D0L5, we calculate losses increasing approximately exponentially with 

decreasing distance from L = 2.3 RE inward to L = 1.3 RE.  Beyond 2.3 RE this analysis results in a 

source of PSD peaking at about 2.8 Rs and diminishing approximately exponentially throughout the 

rest of the observed range in this study. 

Table 2 shows the results for preferred n-values for all of the cases in this study.  Variation of n 

versus µ  for K = 0.1 and 0.3 (gauss)1/2 RE is illustrated in Figure 12.  Note that all of the n-values 

for K = 0.1 (gauss)1/2 RE are smaller than the values for K = (gauss)1/2 RE for all of the first 

invariant values used here.  The patterns in Figure 12 indicate a stronger dependence of diffusion 

coefficient on L for protons mirroring closer to the equator compared to those mirroring further 

from the equator.  Also evident in Figure 12 is a sharp decrease in the value of n that occurs as the 

first invariant diminishes from 30 to 10 MeV/gauss.  Above 30 MeV/gauss the results in Figure 12 

suggest that radial diffusion of protons is much less strongly dependent on L.  One is tempted to 

suspect that different processes may govern the transport of protons above 30 MeV/gauss compared 

to those below. 

 

Approach #2:  Determination of DLL Considering Time Stationary Transport Without Loss 

or Source 

 

To be able to determine the functional relation between L and DLL, we consider the loss-free, 

source-free and stationary case of equation (2) which reads    
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By substitution for ∂F/∂L and ∂2F/∂L2  of equation (3), equation (14) reduces to 

 

 2
2 2

3

1LL LLD D b
L L L L b

⎛ ⎞−∂ ⎛ ⎞ = ⎜ ⎟⎜ ⎟∂ −⎝ ⎠ ⎝ ⎠
 (15) 

 

The solution of this differential equation is 

 

 ( )1 22
3

b
LLD CL L b −= −  (16) 

 

where C is a constant and can be determined from boundary conditions if parameters b2 and b3 are 

known. 

In our case, to examine equation (16), we have used values for parameters b2 and b3 

corresponding to extreme values as well as middle values of µ and K from Table 1.  Results for 

pairs of the first two adiabatic invariants (10.0 and 0.10; 10.0 and 0.50; 30.0 and 0.10; 30.0 and 

0.50; 50.0 and 0.10; 50.0 and 0.50) are shown in Figure 13.  Values of µ and K corresponding to 

parameters b2 and b3 are also shown on the graph.  The parameter C was set to unity in all cases.  

From Figure 13 it is clear that DLL depends on µ as well as on K.  In all cases of the first adiabatic 

invariant, as the value of the second adiabatic invariant increases, DLL increases as well, which is an 

indication of dependency of DLL on pitch angle.  
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Conclusion 

 

The purpose of this work was to investigate the time stationary transport using two alternatives 

to determine the dependence of the diffusion coefficient on L.  To be able to determine the relation 

between D and n, we give the results for n corresponding to each pair of the first two adiabatic 

invariants in tabular form (Table 2).  As mentioned before, since there is no single value for n for 

all pairs of the first two adiabatic invariants, it is difficult to conclude any reasonable power-law 

dependency of the diffusion coefficient to L by conservation of the first and second adiabatic 

invariants except for higher values of the first adiabatic invariant (µ ≥ 25.0).  Still in this region, n 

varies from -2.0 to 1.0.  If we limit values of the first two adiabatic invariants to 

 

 25.0 ≤ µ ≤ 40.0    and    0.15 ≤ K ≤ 0.25 (17) 

 

then we have better results, but this is not the case since we are trying to get a more general result.  

Unlike the magnetic and electric fluctuations, our results show weak dependency of the diffusion 

coefficient on L.   

Figure 9 shows the dependency of the diffusion coefficient on both the first and second 

adiabatic invariants in the case of loss-free, source-free and stationary assumption of radial 

diffusion. 

From the results of data analysis in the case of conservation of the first two adiabatic invariants, 

it is not possible to conclude that it is the formulation of the distribution of radiation belt particles 

by conservation of the first two adiabatic invariants or simplified radial diffusion equations that 
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fails.  More information such as temporal variations and source and loss terms is needed in data 

analysis for more complete results.  

Despite the behavior of n with respect to the first two adiabatic invariants in power law as well 

as variation of DLL with respect to L in the second approach, it is difficult to determine the pattern 

of dependency of the diffusion coefficient to L.  This is the reason that analysis of pure radial 

diffusion with conservation of the first two adiabatic invariants failed to define a single exponent 

for the radial diffusion coefficient.  In a follow-up paper the new variable will be introduced to 

study diffusion, which will illustrate how one dimensional radial diffusion analysis can be 

improved.   
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Figure Captions 

 

 

Figure 1.  Radial diffusion coefficients derived by various methods and by many experimenters 

(from Holzworth and Mozer [1979], Figure 5; copyright American Geophysical Union).  Solid lines 

are derived with some assumptions from experimental data, while dashed lines are theoretical 

determinations.  The sources are given in the inset.   

 

Figure 2.  Phase space density and fitted points vs L for µ = 10 MeV/gauss and K = 0.1 and 0.5 

(gauss)1/2 RE.  Dashed lines show the results of least squares fits to the form of equation (3) and the 

solid symbols evaluate that fit at the tabulated L-values. 

 

Figure 3.  Phase space density and fitted points vs L for µ = 20 MeV/gauss and K = 0.1 and 0.5 

(gauss)1/2 RE.  Dashed lines show the results of least squares fits to the form of equation (3) and the 

solid symbols evaluate that fit at the tabulated L-values. 

 

Figure 4.  Phase space density and fitted points vs L for µ = 30 MeV/gauss and K = 0.1 and 0.5 

(gauss)1/2 RE.  Dashed lines show the results of least squares fits to the form of equation (3) and the 

solid symbols evaluate that fit at the tabulated L-values. 

 

Figure 5.  Phase space density and fitted points vs L for µ = 40 MeV/gauss and K = 0.1 and 0.5 

(gauss)1/2 RE.  Dashed lines show the results of least squares fits to the form of equation (3) and the 

solid symbols evaluate that fit at the tabulated L-values. 
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Figure 6.  Phase space density and fitted points vs L for µ = 50 MeV/gauss and K = 0.1 and 0.5 

(gauss)1/2 RE.  Dashed lines show the results of least squares fits to the form of equation (3) and the 

solid symbols evaluate that fit at the tabulated L-values. 

 

Figure 7. Variation of the PSD fit coefficient, exp(b1), versus first invariant, µ, for the extreme 

observed values of K=0.1 and 0.5 (gauss)1/2 RE. 

 

Figure 8.  Variation of PSD fit coefficient b2 versus first invariant, µ, for the extreme observed 

values of K=0.1 and 0.5 (gauss)1/2 RE. 

 

Figure 9.  Variation of PSD fit coefficient b3 versus first invariant, µ, for all observed values of 

K=0.1, 0.15, 0.2, 0.25, 0.3, and 0.5 (gauss)1/2 RE. 

 

Figure10.  Behavior of equation (12) with respect to n for µ=10.0 MeV/gauss and K=0.10 

(gauss)1/2 RE.  

 

Figure11.  Source and loss versus L for µ=10.0 MeV/gauss and K=0.10 (gauss)1/2 RE.  

 

Figure 12. Variation of preferred n values for power law diffusion versus first invariant, m, for K = 

0.1 and 0.3 (gauss)1/2 RE. 

 

Figure13.  Radial diffusion coefficients versus L for different values of parameters b2 and b3 

(equation (3)) corresponding to different pairs of the first two adiabatic invariants.  The values of 
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adiabatic invariants are shown on the graph.  The first value of each pair corresponds to the first 

adiabatic invariant and the second value of each pair corresponds to the second adiabatic invariant 

(Table 1).  
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Table 1.  Values of coefficients for different pairs of first and second adiabatic invariants. 

  K 

µ coeff. 0.10 0.15 0.20 0.25 0.30 0.50 

b1 7.28 7.17 7.10 7.50 7.36 6.39 

b2 4.58 4.63 4.48 4.08 4.16 3.96 10.0 

b3 1.18 1.18 1.20 1.33 1.36 1.52 

b1 7.30 7.11 7.83 8.05 7.60 6.46 

b2 4.62 4.57 3.71 3.39 3.54 2.98 15.0 

b3 1.28 1.29 1.42 1.53 1.54 1.72 

b1 8.26 8.53 8.39 8.66 7.91 6.25 

b2 3.81 3.18 3.00 2.57 2.64 2.22 20.0 

b3 1.51 1.63 1.66 1.87 1.78 1.93 

b1 8.17 9.22 8.65 8.47 7.80 6.28 

b2 3.51 2.20 2.38 2.28 2.17 1.41 25.0 

b3 1.56 1.91 1.90 1.96 1.97 2.24 

b1 9.11 8.84 8.06 7.40 7.77 4.50 

b2 2.55 2.18 2.36 2.63 1.68 1.78 30.0 

b3 1.85 1.94 1.89 1.87 2.18 1.60 

b1 8.66 8.17 5.80 5.55 6.74 3.88 

b2 2.53 2.34 3.31 3.26 2.02 1.73 35.0 

b3 1.84 1.89 1.21 1.40 2.04 1.87 

b1 8.22 5.83 5.00 2.77 5.13 3.13 

b2 2.52 3.29 3.54 4.29 2.56 1.65 40.0 

b3 1.83 1.07 1.15 0.62 1.60 1.96 

b1 5.97 5.01 3.08 1.43 3.82 2.23 

b2 3.41 3.55 4.11 4.61 2.72 1.75 45.0 

b3 1.01 0.97 0.59 0.28 1.03 1.85 

b1 5.78 3.33 -1.82 0.14 2.58 0.45 

b2 3.38 4.10 5.77 4.97 3.01 2.28 50.0 

b3 1.12 0.49 -1.11 -0.05 0.66 1.06 
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Table 2.  Values of n for different pairs of first and second adiabatic invariants. 

 

K  

0.10 0.15 0.20 0.25 0.30 0.50 

10.0 -5.0 -5.0 -5.0 -3.5 -4.0 -6.5 

15.0 -5.0 -4.0 -3.5 -2.5 -3.0 -5.0 

20.0 -3.5 -2.5 -2.5 -1.0 -2.0 -4.5 

25.0 -3.0 -1.0 -1.0 -1.0 -1.0 -7.0 

30.0 -1.0 -1.0 -0.5 -1.0 -.5 1.0 

35.0 -1.0 -0.5 -1.0 -1.0 0.0 0.5 

40.0 -1.0 -1.0 -1.0 -1.5 -0.5 1.0 

45.0 -1.0 -1.0 -1.5 -2.0 0.0 0.5 

µ 

50.0 -1.0 -1.5 -2.0 -2.0 -0.5 0.5 
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