Results
from the
Galileo
Energetic
Particle Detector During the
Amalthea
Encounter
of
Dr. Thomas Armstrong
Dr. Richard McEntire
Dr. Donald Williams
American Geophysical
Presentation Number SM22B-0255
Table of Contents
1
Preliminary............................................................................................................................................................ 1
1.1 Objectives:.................................................................................................................................................. 1
1.2 Background Information............................................................................................................... 2
2 The New Data.......................................................................................................................................................... 4
2.1 Orientation............................................................................................................................................... 4
2.2 Science.......................................................................................................................................................... 6
3 The Outlook......................................................................................................................................................... 18
3.1 Conclusions:........................................................................................................................................... 18
4 References............................................................................................................................................................ 20
A Appendix: Contact information for the Authors................................................................. A-1
List of Figures
Figure 1.1 EPD Low Energy Magnetospheric measurements
System (LEMMS) Detector Head 3
Figure 2.1
(Galileo’s Trajectory Over the Amalthea Orbit)......................................................... 4
Figure 2.2
(Galileo’s Trajectory Over Amalthean Centered Coordinates)........................ 5
Figure 2.3 Galileo
EPD Orbit A34 Distribution of 32 Sector Rates............................................... 6
Figure 2.4 (16
Sector EPD Energy Ion Data Collected Over Amalthea Swingby) Part II 7
Figure 2.5 ( High
Energy Electrons as Measured by the EPD Instrument Over the Amalthea Swingby) 8
Figure 2.6
(Galileo EPD Orbit A34 Deadtime Corrected Ion Flux Spectra).............................. 9
Figure 2.7
(Uncorrected Ion Fluxes for Particles with Pitch Angles Between 80 and 100
Degrees Over the Amalthea Swingby..................................................................................................................................... 11
Figure 2.8
(Uncorrected Ion Fluxes for Particles with Pitch Angles Between 80 and 100
Degrees Between 3.8 and 5.3 Rj)............................................................................................................................................................ 12
Figure 2.9 Galileo
EPD Ion Pitch Angle Distributions in the Inner Jovian Magnetosphere Part I 13
Figure 2.10
Galileo EPD Ion Pitch Angle Distributions in the Inner Jovian Magnetosphere
Part II 14
Figure 2.11
Galileo EPD Ion Pitch Angle Distributions in the Inner Jovian Magnetosphere
Part III 15
Figure 2.12
(Galileo EPD Orbit A34 Time Series of 64 Sector Rates: Examination of Possible
Amalthean Moonlets).......................................................................................................................................................... 16
List of Tables
Table 1.I Important Facts about Jupiter, Amalthea,
Galileo, the EPD, and Charged Particles 2
Table 1.II
Amalthea Encounter Velocity Summary.......................................................................... 3
The
purpose of this document is to reformat the poster presentation given at the
American Geophysical Union on
There
are four main objectives sought in this research:
1. Evaluate the performance of the
Galileo Orbiter Energetic Particle Detector in the intense radiation
environment of the inner (< 6 Rj) Jovian magnetosphere
2. Search for signatures of
interaction between trapped radiation and natural satellites—especially
Amalthea.
3. Calculate and check parameters
essential to the interpretation of trapped radiation observations—especially
pitch and phase angles.
4.
Begin
the analysis of the sources, losses, and transport of trapped radiation.
Table 1.I provides some of the necessary facts about the
environment of study.
Table 1.I Important Facts about Jupiter, Amalthea, Galileo, the EPD, and Charged Particles
Description |
Symbol |
Value |
Units |
Jupiter |
|||
Mass |
MJ |
1.9*1027 |
kg |
Equatorial
Radius |
RJEQ |
71398 |
km |
Roche
Limit |
RJRoche |
134211 |
km |
Magnetospheric
Angular Velocity |
wJ |
1.76*10-4 |
Rad/s |
Amalthea |
|||
Mass |
MA |
7.17*1018 |
kg |
Idealized Radius |
RA |
86.2 |
km |
Density |
rA |
1800 |
kg/m3 |
Orbital Radius |
|
181300 |
km |
Orbital Period |
PA |
11.96 |
hours |
Orbital
Eccentricity |
|
0.003 |
~ |
Galileo |
|||
Mass |
MGal |
2223 |
kg |
Velocity at
Amalthea |
V |
17.05 |
km/s |
Beginning of |
|
|
|
End of |
|
|
|
EPD |
|||
|
DEZ³1 |
0.022-100 |
MeV |
|
DEe- |
.015-11 |
MeV |
Charged
Particles (At Amalthea) |
|||
Gyro-Radius for 1
MeV Proton |
R+1 MEV |
5.180 |
km |
Gyro-Radius for 2
MeV Proton |
R+2 MEV |
7.327 |
km |
Gyro-Radius for 1
MeV Electron |
R-1 MEV |
0.170 |
km |
Gyro-Radius for 10
MeV Electron |
R-10 MEV |
1.255 |
km |
Table 1.II Provides calculated values for the velocities of
various components in the Jovian centered system.
Table 1.II Amalthea Encounter Velocity Summary
Description |
Velocity |
|
Magnitude |
|
km/s |
Amalthea's
Orbit |
26.47 |
|
|
Jovian
Magnetic Field Rotation at Amalthea |
31.88 |
|
|
Galileo |
34.11 |
|
|
1
MeV Protons ÑB |
3.49 |
2
MeV Protons ÑB |
4.94 |
|
|
1
MeV Proton Gyration |
1.3830E+04 |
2
MeV Proton Gyration |
1.9543E+04 |
1
MeV Electron Gyration |
2.8213E+05 |
10
MeV Electron Gyration |
2.9944E+05 |
Figure 1.1 EPD Low Energy Magnetospheric measurements System (LEMMS) Detector Head
Figure 2.1 (Galileo’s Trajectory Over the Amalthea Orbit)
Figure 2.2 (Galileo’s Trajectory Over Amalthean Centered Coordinates)
Figure 2.3 Galileo EPD Orbit A34 Distribution of 32 Sector Rates
Figure 2.4 (16 Sector EPD Energy Ion Data Collected Over Amalthea Swingby) Part II
Dead
Time Correction Formulae
Label |
Value |
Units |
tAS |
1.2 |
ms |
tBS |
1.2 |
ms |
tCS |
1.6 |
ms |
tDS |
1.6 |
ms |
Figure 2.7 (Uncorrected Ion Fluxes for Particles with Pitch Angles Between 80 and 100 Degrees Over the Amalthea Swingby
Figure 2.8 (Uncorrected Ion Fluxes for Particles with Pitch Angles Between 80 and 100 Degrees Between 3.8 and 5.3 Rj)
Figure 2.9 Galileo EPD Ion Pitch Angle Distributions in the Inner Jovian Magnetosphere Part I
Figure 2.10 Galileo EPD Ion Pitch Angle Distributions in the Inner Jovian Magnetosphere Part II
Figure 2.11 Galileo EPD Ion Pitch Angle Distributions in the Inner
Jovian Magnetosphere Part III
Figure 2.12 (Galileo EPD Orbit A34 Time Series of 64 Sector Rates: Examination of Possible Amalthean Moonlets)
The Star Scanner
The star scanner (Fiesler at JPL) registered brief
responses after Amalthea closest approach.
These responses could be due to moonlets traveling with Amalthea in its
orbit. Searching through the EPD
high-resolution data, several micro-signature candidates for these moonlets
where observed. There is a slight lag,
however, between the time stamps of the EPD and star scanner events.
1. Penetrating electrons (>1 MeV)
are diminished by about a factor of 10 in intensity beginning at
2.
Deadtime corrected EPD measured the energy spectra of 0.5
to 10 MeV protons to be:
a 1.42
x 105 E-1.1 at the center of the absorption feature and b 5.21 x 105 E-2.2 outside
the feature
3. Uncorrected EPD measurements of
the ion fluxes between 3.8 and 5.3 Rj were found to be :
a Flux
= (8*107)*e-1.175*Rj for 0.515-0.825 MeV ions.
b Flux
= (2*107)*e-1.208*Rj for 0.828-1.680 MeV ions.
c Flux
= (2*107)*e-1.498*Rj for 1.680-3.20 MeV ions.
4. The absorption of ions by
Amalthea is energy dependent.
5. The absorption of ions by
Amalthea is strongest at 90 degrees local pitch angle.
6. The theoretical dipole loss cone
at 2.5 Rj is approximately 11 degrees. Observations of 0.5 to 10 MeV ions at 2.521
Rj cover the range from 6.5 to 125 degrees of pitch angle and show the lowest
(possibly zero) flux in the loss cone. The instrument acceptance angle of +/- 7.5
degrees did not resolve the loss cone.
7. Pitch angle distributions (PAD’s)
of energetic ions appear to be of two types: One type is broadly peaked at 90
degrees and the second has two peaks (approximately 60 and 120 degrees). Some PADs appear to have evidence of
complicated gradient anisotropies. We
have found no evidence of convection related anisotropy (nor did we expect to
for 0.5 to 10 MeV protons at the modest convection speeds (30 km/sec) of the
inner magnetosphere.
1.
Cravens, Thomas E, Physics of Solar System Plasmas,
2. http://www.solarviews.com/eng/amalthea.htm
3. http://www.jpl.nasa.gov/missions/past/galileo.html
1.
Dr. Thomas Armstrong
Fundamental
Technologies, LLC
2.
Fundamental Technologies, LLC
3.
Fundamental Technologies, LLC
4.
Dr. Richard McEntire
5.
Dr. Donald Williams
Fundamental Technologies, LLC
2411 Ponderosa Dr. Suite A
(785) 840-0800 (phone)
(785) 840-0808 (fax)